

S10 Unit B: Work and Energy Practice

1. A Big Mac sandwich contains 2300 J. Assuming all of this energy is converted to useful energy in your body, how much work can you do after consuming the sandwich?

W= 2305J

2. An iron nail placed near a powerful magnet that creates a magnetic force acting to the right, as shown. The nail is moved from point A to point B (a distance of 2.1 m), then from point **B** to point **C**.

a) What work is done on the nail by the magnet when moving from **A** to **B**?

b) What work is done on the nail by the magnet when moving from **B** to **C**?

3. Determine the displacement traveled by a car with an engine that applies a force of -5500 \ensuremath{N} and which consumes 6.5 x 10⁶ J of energy.

$$F = 7.1 \text{ mN}$$

$$= 0.0071 \text{ N}$$

$$J = 150000 \text{ m}$$

$$V = 7$$

$$V = 3$$

$$W = fd$$

formula

5. Determine the gravitational potential energy of a 25 kg object moved to 20 m from the Earth's surface.

$$m=25ky$$
 $dL=90m$
 $\tilde{g}=9.81m1s^2$
 $L=7$

variables list

6. To what height would a 70 kg student need to climb a ladder if the student wanted to gain 10000 J of energy?

$$h=?$$
 $m=70ky$
 $f=10000J$
 $g=9.81m15^2$
variables list

7. What amount of gravitational potential energy is given to a 500 g rock if it is moved 650 cm above the Earth's surface?

substitution (with units) and algebra

8. Determine the kinetic energy of a 2700 kg car moving at 25 m/s.

9. A bumble bee has a mass of 4.00~g and can move with a speed of 80~km/h. Determine the kinetic energy of this bee.

$$\int_{\mathcal{A}} = \int_{\mathcal{A}} mJ^2$$
formula

10. A rock is thrown with a velocity of 10 m/s and has a kinetic energy of 250 J. What is the mass of the rock?

$$v=10m$$
 $= 2505$
 $m=?$

variables list

$$E_{\kappa} = \int_{a}^{b} m \nabla^{a}$$
formula

11. A 13 kg box is pushed and given a kinetic energy of 400 J. Determine the speed of the box, in m/s.

$$M = 13kg$$

$$E_{K} = 400J$$

$$V = 3$$
variables list

4				
				•
				•
				•
				·
	•			
				•
			•	
			•	
				•
				•
		•		